Искусство крепежа 27 лет крутимся для вас
8 (800) 333-61-84 Принимаем звонки 24/7
sale@cki.com.ru

Информация о легирующих элементах стали

 

 

Каждый отдельный элемент придает стали в зависимости от его доли определенные специфические свойства. В случае присутствия нескольких элементов эффект может быть увеличен. Но существуют варианты сплавов, в которых отдельные элементы в отношении определенного поведения оказывают свое влияние не в одном направлении, а могут противодействовать друг другу. Наличие легирующих элементов в стали создает только предпосылку для желаемых свойств; их можно достичь лишь с помощью переработки и тепловой обработки. Ниже перечислены главные виды влияния, которые оказывают на сталь легирующие и сопутствующие элементы.

 

Алюминий (Al) Температура плавления 658° C

Это наиболее сильное, очень часто применяемое дезоксидационное и, кроме этого, денитрирующее средство; благодаря этому оно очень благоприятно воздействует на нечувствительность к старению. В небольших добавках он поддерживает образование мелких зерен. Поскольку Al образовывает с азотом нитриды высокой твердости, он является преимущественно легирующим элементом в азотированной стали. Он повышает стойкость к окалинам и поэтому часто добавляется в ферритную жаростойкую сталь. В нелегированной углеродной стали можно с помощью „алитирования“ (добавления Al в поверхность) повысить стойкость к окалинам. Al сильно суживает - зону. Из-за сильного повышения коэрцитивной силы алюминий является легирующим элементом в магнитотвердых сплавах железа, никеля, кобальта, алюминия.

Свинец (Pb) Температура плавления 327.4° C

Добавляется в автоматную сталь в содержании прибл. 0.2-0.5%, поскольку благодаря его чрезвычайно тонкому суспензионному распределению достигается образование краткой стружки и чистой поверхности разреза. Указанные содержания свинца практически не влияют на механические свойства стали.

Бор (B) Температура плавления 2300° C

Поскольку бор имеет большое эффективное поперечное сечение для абсорбции нейтронов, им легируют сталь для регуляторов и экранов в установках по атомной энергии. Аустенитная 18/8 CrNi-сталь может с помощью бора благодаря дисперсионному твердению получить более высокий предел текучести при растяжении и прочность, при чем уменьшается антикоррозионная стойкость. Вызванные бором выделения улучшают прочность высокожаропрочных типов аустенитной стали в зоне повышенных температур. В строительной стали этот элемент улучшает глубокую цементацию и вызывает, таким образом, повышения прочности зерна цементируемой стали. Следует рассчитывать на сокращение сварочных работ в легированной бором стали.

Хром (Cr) Температура плавления 1857° C

Cr делает сталь способной к закалке в масле и воздухе. Вследствие понижения необходимой для образования мартензитов критической скорости охлаждения он повышает закаливаемость и улучшает, таким образом, способность к повышению качества. Однако ударная вязкость уменьшается, но сокращает растяжение лишь немного. Свариваемость сокращается в чистой хромовой стали при увеличении содержания хрома. Прочность стали на растяжение повышается на 80-100 н/мм на каждый 1% Cr. Cr является образователем карбида. Его карбиды повышают стойкость к режущим инструментам и износостойкость. Термическая стойкость и стойкость к напорному водороду увеличиваются благодаря хрому. В то время, как увеличение содержания хрома повышает стойкость к окалинам, для антикоррозионной стойкости стали необходимо минимальное содержание хрома прибл. 13%, который должен быть растворен в матрице. Элемент отсекает зону и расширяет, таким образом, ферритную зону; стабилизирует аустенит в аустенитной стали Cr-Mn- или Cr-Ni. Теплопроводимость и электрическая проводимость уменьшаются. Тепловое расширение понижается (сплавы для впаивания в стекло). При одновременно более высоком содержании углерода содержание хрома до 3% повышает остаточный магнетизм и коэрцитивную силу.

Углерод (C) Температура плавления 3540° C

Углерод является наиболее важным и влиятельным легирующим елементом в стали. Наряду с углеродом каждая нелегированная сталь содержит кремний, марганец, фосфор и серу, которые добавляются при изготовлении непреднамеренно. Добавление дальнейших легирующих элементов для достижения особых эффектов, а также сознательное повышение содержания марганца и кремния вызывает образование легированной стали. При увеличении содержания углерода повышаются прочность и твердость стали, напротив его расширение, ковкость и обрабатываемость уменьшаются (режущими инструментами). Углерод практически не влияет на антикоррозионную стойкость к воде, кислотам и горячим газам.

Медь (Cu) Температура плавления 1084° C

Медь добавляется только к небольшому количеству сортов стали, поскольку она обогащается под слоем окалины и вследствие проникновения в пределы ядра вызывает большую нечувствительность поверхности при процессах тепловой деформации, поэтому она рассматривается частично как вредитель для стали. Предел текучести при растяжении и соотношение предела текучести при растяжении и прочности повышаются. Содержание выше 0.30% может вызвать дисперсионное твердение. Закаливаемость улучшается. Медь не влияет на сварочные работы. В нелегированной и слаболегированной стали благодаря меди достигается значительное улучшение стойкости к атмосферным явлениям.

Марганец (Mn) Температура плавления 1221° C

Марганец дезоксидирует. Он связывает серу как сульфиды марганца и сокращает, таким образом, неблагоприятное влияние сульфида железа. Это имеет особое значение при автоматной стали: опасность красноломкости уменьшается. Марганец очень сильно сокращает скорость охлаждения и, таким образом, повышает закаливаемость. Предел текучести при растяжении, а также прочность благодаря марганцу повышаются, кроме этого, марганец благоприятно влияет на ковкость и свариваемость и сильно увеличивает глубину прокаливемости. Содержание выше 4% вызывают также при медленном охлаждении образование хрупкой мартензитной структуры, так что легирующая зона почти не используется. Сталь с содержанием марганца выше 12% являются при одновременном высоком содержании углерода аустенитной, потому что марганец значительно расширяет зону. Такие виды стали получают при ударной нагрузке поверхности очень высокое холодное упрочнение, в то время, как ядро остается вязким; поэтому они при ударном воздействии имеют высокую износостойкость. Сталь с содержанием марганца выше 18% остаются немагнетизируемыми также после сравнительно сильной холодной обработки давлением и применяется как специальная сталь и как вязкая в холодном состоянии сталь при температурной нагрузке. Под влиянием марганца повышается коэффициент теплового расширения, в то время, как тепловая проводимость и электрическая проводимость понижаются.

Молибден (Mo) Температура плавления 2622° C

Молибден легируют преимущественно вместе с другими элементами. Вследствие сокращения критической скорости охлаждения улучшается закаливаемость. Молибден существенно уменьшает хрупкость отпуска, например, в хромо-никелевой и марганцевой стали, способствует образованию мелкого зерна и благоприятно влияет также на свариваемость. Повышение предела текучести при растяжении и прочности. При высоком содержании молибдена затрудняется ковкость. Сильный образователь карбида; благодаря этому улучшаются режущие свойства быстрорежущей стали. Он принадлежит к тем элементам, которые повышают антикоррозионную стойкость и поэтому часто используется в высоколегированной хромовой стали и аустенитной хромо-никелевой стали; высокое содержание молибдена уменьшает склонность к сквозной коррозии. Очень сильное сужение зоны; повышение теплостойкости, стойкость к окалинам сокращается.

Никель (Ni) Температура плавления 1453° C

Вызывает в строительной стали значительное повышение ударной вязкости образца с надрезом и поэтому легируется для повышения вязкости в цементируемой, улучшенной и вязкой в холодном состоянии стали. Все точки преобразований (A1-A4), понижаются под влиянием никеля; он является образователем карбида. Благодаря сильному расширению зоны никель в химически стойкой стали с содержанием больше 7% придает аустенитную структуру до уровня ниже комнатной температуры. Сам никель с высоким процентным содержанием делает сталь только инертной к коррозии, в аустенитной хромо-никелевой стали создает стойкость к влиянию восстанавливающихся химикатов; стойкость этих видов стали достигается благодаря хрому. Аустенитная сталь имеет при температурах выше 600° C более высокую теплостойкость, поскольку температура её рекристаллизации высокая; она практически не намагничивающаяся. Тепловая проводимость и электрическая проводимость сильно уменьшаются. Высокое содержание никеля в точно ограниченных легирующих зонах создают физическую сталь с определенными физическими свойствами, например, температурное расширение (тип инвар).

Фосфор (P) Температура плавления 44° C

Рассматривается преимущественно как вредитель стали, поскольку фосфор вызывает сильную первичную сегрегацию при затвердении плавки и возможность вторичной сегрегации в твердом состоянии вследствие сильного отсекания зоны. Вследствие сравнительно небольшой скорости диффузии, как и в альфа-, так и в гамма–твёрдом растворе (смешанном кристалле) указанные сегрегации могут с трудом уравновешиваться. Поскольку вряд ли возможно достичь гомогенного распределения фосфора, стремятся удерживать содержание фосфора на очень низком уровне и соответственно в высококачественной стали достигать верхний предел 0.03-0.05%. Размер сегрегации нельзя определить с точностью. Фосфор повышает уже в минимальном содержании чувствительность к хрупкости отпуска. Фосфорная хрупкость увеличивается при увеличении содержания углерода, при увеличении температуры твердения. Размера зерна и при уменьшении степени уковки. Хрупкость появляется как хладноломкость и чувствительность к ударной нагрузке (склонность к хрупкому разрушению). В слаболегированной строительной стали с содержанием углерода прибл. 0.1% фосфор повышает прочность и антикоррозионную стойкость к атмосферным явлениям; медь поддерживает улучшение антикоррозионной стойкости (инертная к коррозии сталь). Добавки фосфора в аустенитную хромо-никелевую сталь вызвать повышение предела текучести при растяжении и эффекты выделения.

Сера (5) Температура плавления 1180С

Из всех примесей в стали даёт самую сильную ликвацию. Сульфид железа приводит к красноломкости, или «горячеломкости». поскольку низкоплавкая сульфидная эвтектика в виде сетки охватывает кристаллиты, так что имеет место низкое сцепление последних, и при горячей деформации преимущественно разрушаются границы зерен; эффект усиливается под действие кислорода. Сера имеет особенно высокое сродство к марганцу, ее связывают в виде сульфида марганца, поскольку из всех присутствующих обычно включений он является наименее опасным, распределен в стали точечно и имеет высокую температуру плавления. Сера в среднем существенно снижает вязкость. Серу намеренно добавляют в сталь автоматной обработки в количестве до 0.4%, поскольку благодаря смазывающему действию на режущую кромку уменьшение трения между заготовкой и инструментом позволяет достичь повышения его стойкости. Кроме того, у
автоматных сталей при обработке резанием образуется короткая стружка. Сера усиливает склонность к образованию сварочных трещин.

Кремний (5i) Температура плавления 14140С

Кремний, аналогично марганцу, содержится в любой стали, так как уже железные руды в зависимости от состава вносят его соответствующее количество. Также и собственно при производстве стали кремний из огнеупорной футеровки печи переходит в расплав. Однако кремнистыми называют только такие стали, которые содержат более 0.40% кремния. Кремний не является металлом, но так называемым металлоидом, как, например, фосфор и сера. Кремний раскисляет. Он благоприятствует выпадению графита и сильно сужает гамма-область, повышает
прочность и износостойкость (кремниймарганцовые улучшаемые стали); сильное повышение предела упругости, поэтому целесообразен в качестве легирующей добавки в пружинные стали. Кремний значительно повышает окалиностойкость, так что им легируют жаростойкие стали. Однако вследствие отрицательного влияния на деформацию в горячем и холодном состоянии допустимые содержания ограничиваются. При 12% кремния достигается дополнительная кислотостойкость, однако такие марки могут быть изготовлены только в виде очень твердых и хрупких
отливок, которые могут быть обработаны только шлифованием. Вследствие сильного снижения электропроводности, коэрцитивной силы и активных потерь кремний используется в электротехнических листовых сталях.

Азот (N) Температура плавления –210° C

Этот элемент может проявляться как вредитель для стали, и как легирующий элемент. Вредитель из-за уменьшения вязкости вследствие процессов выделения, увеличения чувствительности к старению и синеломкости (деформация в диапазонах голубой теплоты 300-350° C), а также из-за возможности появления межкристаллитного коррозионного растрескивания в нелегированой и низколегированной стали. В качестве легирующего элемента азот расширяет зону и стабилизирует аустенитную структуру; повышает в аустенитной стали прочность и прежде всего предел текучести при растяжении, а также механические свойства в теплоте. Азот позволяет получить высокую твердость поверхности благодаря образованию нитридов при нитрировании (нитрирование).

Титан (Ti) Температура плавления 1680° C

Благодаря своему высокому химическому сродству с кислородом, серой и углеродом имеет сильное дезоксидирующее действие, сильное денитрирующее действие, серообразующее и сильное карбидобразующее действие. Широко используется в стойкой к коррозии стали в качестве образователя карбида для  стабилизации по отношению к межкристаллитной коррозии; имеет, кроме этого, зерноизмельчающие свойства. Tитан очень сильно сужает y-зону. Он в более высоких долях вызывает процессы выделения и благодаря достижению высокой коэрцитивной силы добавляется в магнитотвердые сплавы. Титан повышает длительную прочность благодаря образованию специальных нитридов. Однако титан имеет сильную склонность к сегрегации и образованию строк.

Ванадий (V) Температура плавления 1910° C

Измельчает первичное зерно и, таким образом, структуру литья; сильный образователь карбида, вследствие чего появляется увеличение износостойкости, режущей способности и теплостойкости; поэтому предпочитается использование в качестве дополнительного легирующего элемента в быстрорежущей, теплообрабатываемой и теплостойкой стали. Значительное улучшение твердости после отпуска, уменьшение чувствительности к перегреву. Поскольку ванадий измельчает зерно и вследствие образования карбида тормозит воздушную закалку, он повышает ковкость улучшенной стали. Благодаря образованию карбида повышение стойкости к напорному водороду. Ванадий сужает – зону и перемещает коэффициент Кюри к более высоким температурам.

 

 
Понравился материал?
Поделиться:

Комментарии

Комментариев пока нет

Отправляя данную форму я соглашаюсь с Политикой конфиденциальности

Еще статьи